But-1-ynyldipropylphosphine (1h) and di(but-1-ynyl)-propylphosphine (2b) were obtained in yields of 10% and 8%, respectively, by the procedure presented above using propyl chloride (instead of ethyl bromide). GLC-MS, m/z (I_{rel} (%)): 1b: 170 [M]+ (57), 155 (58), 128 (98), 127 (58), 100 (100), 99 (54), 86 (52), 85 (79), 83 (55), 57 (54); 2b: 180 [M]+ (100), 165 (89), 137 (77), 123 (54), 109 (65), 97 (54), 91 (53), 85 (59), 83 (77), 57 (79). 1 H; 13 C; and 31 P NMR of the mixture of phosphines 1b and 2b, 6: 231-2.23 (dq, CH₂C $_{\pm}$ C); 1.65-1.44 (m, CH₂CH₂P); 1.71-1.10 (m, Me of EtC $_{\pm}$ C fragment); 1.04-0.97 (t, Me in Pr radical); 107.3 (RC $_{\pm}$); 73.1 ($_{\pm}$ CP); 29.7, 19.3, 15.7, 13.8; -48.5 (P) for phosphine 1b and -66.7 (P) for phosphine 2b. IR, v/cm^{-1} 2190 (vC $_{\pm}$ C).

GLC-mass spectra were recorded on an LKB-2091/152 GLC-mass spectrometer. NMR spectra were recorded in CDCl₃ on a Bruker AC 300 spectrometer. IR spectra were obtained on a Specord IR-75 spectrometer. The ratio of phosphines 1 and 2 in the mixture was determined by GLC on a Varian 3400 chromatograph.

References

 W. Voskuil and J. F. Arens, Rec. Trav. Chim. Pays Bas, 1962, 81, 993.

Received January 16, 1997

Crown compounds for anions. Binding of borohydride anions by cyclic trimeric perfluoro-o-phenylenemercury

E. S. Shubina, E. V. Bakhmutova, L. N. Saitkulova, I. A. Tikhonova, G. G. Furin, V. I. Bakhmutov, V. B. Shur, and L. M. Epstein X

^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: 007 (095) 135 5085. E-mail: shu@ineos.ac.ru

^b Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences, 13A ul. Lenina, 614600 Perm', Russian Federation.

Fax: 007 (342 2) 32 5018

^cNovosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent'eva, 630090 Novosibirsk, Russian Federation. Fax: 007 (383 2) 35 4747

It is known that cyclic trimeric perfluoro-o-phenylenemercury (o-C₆F₄Hg)₃ (1) containing three mercury atoms in the planar nine-membered cycle¹ reacts readily with halide anions to form complexes. In the case of Br and I, the complexes isolated in the solid state have a 1:1 composition and, according to the X-ray diffraction analysis data, are polymeric multideck sandwiches $\{[(o-C_6F_4Hg)_3]X_n\}^{n-}$ (X = Br, I) in which each halide anion is symmetrically coordinated with six mercury atoms of two adjacent molecules of the macrocycle.2.3 Complex 1 with the thiocyanate anion (1:1), described previously,4 has a similar polymeric structure. In this complex, the SCN- ions are coordinated with the mercury atoms through the sulfur atom. In this work, we report on the ability of macrocycle 1 to bind efficiently borohydride anions to form complexes, whose composition depends on the ratio of the reagents.

Experiments were carried out at ~20 °C in an atmosphere of Ar by gradual addition of 1 to a solution of Bu₄N⁺BH₄⁻ in THF. The course of the reaction was monitored by IR spectroscopy. As compound 1 was added, the band of the vBH vibrations of the free BH₄⁻

ion (2201 cm⁻¹) in the IR spectrum disappeared gradually, and new bands corresponding to the complexes $\{[(o-C_6F_4Hg)_3](BH_4)_2\}^{2-}$ (2) and $\{[(o-C_6F_4Hg)_3]_2(BH_4)\}^-$ (3) appeared. The composition of the complexes was established by the methods of molar ratios and isomolar series⁵ from the IR spectra. The formation of a complex of I with $Bu_4N^+BH_4^-$ was also monitored by the NMR spectra.

Complex 2 contains two BH₄⁻ anions per molecule of the macrocycle (1) and is formed when an excess of BH₄ with respect to 1 is used. The IR spectra of 2 in a THF solution are characterized by the bands of the stretching vibrations of the terminal and bridge BH bands (at 2300 and 2035 cm⁻¹) shifting relative to the band of the free BH₄ ion to the high- and lowfrequency regions, respectively. The 199Hg NMR spectrum of a solution of 2 in THF at 200 K contains a signal at -13 ppm (from Ph₂Hg as external standard), which is strongly shifted relative to the signal of the initial compound 1 (-341 ppm). The ¹¹B(¹H) NMR spectrum of compound 2 at 200 K exhibits signals at -38 and -30 ppm assigned to the free and coordinated BH₄⁻ anions, respectively. The stability constant of 2 determined by the method of molar ratios is equal to 10⁴ L² mol⁻², i.e., the complex is quite stable.

Another complex 3 is formed at excess of 1 with respect to BH_4^- and, unlike 2, contains only bridge BH bonds (vBH = 2129 and 2057 cm⁻¹). The ¹⁹⁹Hg NMR spectrum of compound 3 in THF at 200 K contains a signal at -154 ppm, while in its ¹H NMR spectrum a broad signal of the coordinated BH_4^- anion is observed at 4.5 ppm. No signal of the free BH_4^- ion (-0.1 ppm) is observed in the ¹H NMR spectrum of complex 3. Complex 3 is even more stable than complex 2: its stability constant is equal to $10^7 L^2 mol^{-2}$.

The IR spectra of the solid films of complexes 2 and 3 on the CaF_2 and KBr supports contain the same vBH bands as the spectra of the solutions.

Binding of the BH_4^- anions with the mercury atoms in both complexes likely occurs due to the formation of the B-H-Hg bridges. A similar type of binding has been described previously⁶ for the complex of the o-carboranylmercury macrocycle $(B_{10}Et_8H_2C_2Hg)_4$ with two closo- $[B_{10}H_{10}]^{2-}$ diamions. The observed reaction of 1 with $Bu_4N^+BH_4^-$ is the first example of the formation of complexes of borohydride anions with polymercury-containing macrocycles.

This work was financially supported by the Russian Foundation for Basic Research (Projects Nos. 95-03-09365 and 96-03-33472).

References

- M. C. Ball, D. S. Brown, A. G. Massey, and D. A. Wickens, J. Organomet. Chem., 1981, 206, 265.
- V. B. Shur, I. A. Tikhonova, A. I. Yanovsky, Yu. T. Struchkov, P. V. Petrovskii, S. Yu. Panov, G. G. Furin, and M. E. Vol'pin, J. Organomet. Chem., 1991, 418, C29.
- 3. V. B. Shur, I. A. Tikhonova, A. I. Yanovskii, Yu. T. Struchkov, P. V. Petrovskii, S. Yu. Panov, G. G. Furin, and M. E. Vol'pin, *Dokl. Akad. Nauk SSSR*, 1991, 321, 1001 [Dokl. Chem., 1991, 321 (Engl. Transl.)].
- I. A. Tikhonova, F. M. Dolgushin, A. I. Yanovsky, Yu. T. Struchkov, E. S. Shubina, A. N. Gavrilova, L. N. Saitkulova, L. M. Epstein, G. G. Furin, and V. B. Shur, J. Organomet. Chem., 1996, 508, 271.
- J. Inczedy, Analytical Applications of Complex Equilibria, Ed. J. Tyson, Akad. Kiado, Budapest, 1976.
- X. Yang, C. B. Knobler, and M. F. Hawthorne, J. Am. Chem. Soc., 1993, 115, 4904.

Received January 17, 1997; in revised form February 4, 1997